Gaussian Process Assisted Active Learning of Physical Laws
نویسندگان
چکیده
منابع مشابه
Quantum assisted Gaussian process regression
Gaussian processes (GP) are a widely used model for regression problems in supervised machine learning. Implementation of GP regression typically requires O(n) logic gates. We show that the quantum linear systems algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] can be applied to Gaussian process regression (GPR), leading to an exponential reduction in computation time in some inst...
متن کاملGaussian Process Classification and Active Learning with Multiple Annotators
Learning from multiple annotators took a valuable step towards modeling data that does not fit the usual single annotator setting, since multiple annotators sometimes offer varying degrees of expertise. When disagreements occur, the establishment of the correct label through trivial solutions such as majority voting may not be adequate, since without considering heterogeneity in the annotators,...
متن کاملDual Control with Active Learning using Gaussian Process Regression
In many real world problems, control decisions have to be made with limited information. The controller may have no a priori (or even posteriori) data on the nonlinear system, except from a limited number of points that are obtained over time. This is either due to high cost of observation or the highly non-stationary nature of the system. The resulting conflict between information collection (...
متن کاملthe impact of computer-assisted language learning on achievement motivation of high school students
چکیده انگیزه دلیل اصلی رفتارهای ما است. به نظر می رسد انگیزه جزء جدایی ناپذیر فرایند یادگیری باشد. ارزش ذاتی موفقیت تمایل به پیشرفت را در یادگیرنده ایجاد میکند. به عبارت ساده این تمایل انگیزه پیشرفت نامیده میشود. انگیزه پیشرفت را میتوان در احساس یادگیرنده هنگام چالش با درس های مدرسه، لذت انجام فعالیت درسی، یا حس کشف پاسخ مشاهده کرد.حتی ممکن است انگیزه پیشرفت را در تلاش یادگیرنده برای جلب تایید...
Accelerated Learning of Gaussian Process Models
The Gaussian process model is an example of a flexible, probabilistic, nonparametric model with uncertainty predictions. It offers a range of advantages for modelling from data and has been therefore used also for dynamic systems identification. One of the noticeable drawbacks of the system identification with Gaussian process models is computation time necessary for modelling. The modelling pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Technometrics
سال: 2020
ISSN: 0040-1706,1537-2723
DOI: 10.1080/00401706.2020.1817790